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Abstrad. Negarive linear magnetoresistance o f  two-dimensional (20) electrons has been found 
in a disordered m y  of antidots. We suggest ffiat uajectories thal mll along Le array of anlidots 
exist in a magnetic field. These trajectories have a mean free path larger than the average value 
for electrons with ordinary diffusion. 

A magnetic field decreases the mean free path of electrons, therefore the magnetoresistance 
of semiconductors and metals is positive. However, at low temperature and weak magnetic 
field negative magnetoresistance has been observed [l]. This phenomenon has been 
explained from a quantum standpoint. The crossed electron trajectories increase the 
backscattering probability due to the interference at the crossing point. Magnetic field 
suppresses this interference because of the Aharonov-Bohm effect, the backscattering 
probability decreases, and as a result negative magnetoresistance appears [I]. From the 
classical standpoint the negative magnetoresistance is a result of the increase of the electron 
elastic scattering length or the appearance of carriers with a mean free path larger than the 
average value. In [2] Wagenhuber et a1 have found theoretically thal this probability exists 
in a two-dimensional (20) electron gas in a lateral 2D lattice. The anomalous diffusion of 
electrons in a magnetic field was predicted This is characterized by a linear increase of the 
mean square displacement of camers (x2 ) ’ / *  Y r** with a = 1. It is responsible for the 
violation of the exponential distribution of a portion of particles with mean free path, and 
thus, electrons with an anomalously Large elastic scattering length appear. However, the 
influence of this effect on the electron transport, and in particular on the magnetoresistance, 
was not considered. 

One type of ZD lateral superlattice with a strong repulsive potential is an array of antidots 
[41, holes with submicron diameter produced in a 2D electron gas by etching or irradiation 
by ions. This system has also attracted attention because it allows various arrangements 
of antidots to be simulated: square [3,4]. hexagonal [5 ] ,  two-dimensional quasiclystals [6] ,  
and disordered 17.81. 
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Table 1. The mean free path as a function of the degree of disorder. 

A 1 before illumination 1 afler illumination 

0.1 0.17 0.18 
0.25 0.21 0.39 
0.35 0.39 0.45 

work the magnetoresistance of 2D electrons in periodic and disorde1 tticc - 
antidots has been studied, and the negative magnetoresistance, which grows with degree of 
disorder, has been found. 

The test samples were Hall bridges based on GaAdAlGaAs heterosmctures with a 
2D electron gas. The parameters of the initial heterostructures were: electron density 
n, = 5 x 10" mobility p = (2 - 5) x I@ anz V s. A lattice of antidots, 
produced by electron-beam lithography and reactive ion etching, covered a part of the 
sample between the potential probes. The antidot diameter was 0.15-0.2 pm. The effective 
antidot diameter a, which consists of a lithographic diameter and a depletion length, was 
0.2-0.3 pm. Samples with various degrees of disorder of the array of antidots were made 
for experiment (figure 1). The disordering of the lattice was accomplished in the following 
way. The random-number generator determined the shift in the position of the antidots in 
the direction of the neighbouring antidots. The deviations of antidots from their periodic 
arrangement in the lattice with period d = 0.7 p m  at the peak were A = O.O,O.l, 0.25 and 
0.35 fim. Thus, the short-range order of the system was violated, but its long-range order 
was preserved. 
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The magnetoresistance was measured using the four-terminal method at frequencies 
70-700 Hz in a magnetic field of up to 0.4 T and at temperatures of 1.74.2 K. Electron 
scattering by the antidot lattice was dominant in our samples: from this the mean free path I 
(which was determined from the resistance at B = 0) was found to be 10 times lower than 
in samples without antidots. Table I shows the value of I for samples with various degrees 
of disorder. Surprisingly, the behaviour of I is non-monotonic with disorder. We see, that 
with an increase of A, the length I initially decreases, and then increases again. Similar non- 
monotonic behaviour has been observed recently in samples with a quasiperiodic penrose 
tiling) lattice of antidots 161, which is an intermediate type of array between periodic and 
disordered, In this case the length I initially decreases with length increase of the basic 
hiangle in the Penrose cell, and then increases again. We believe that this non-monotonic 
behaviour of I with disorder is not connected with inhomogeneity or variation of mobility 
in the initial samples before pattering of antidots. We fabricated several samples with the 
same periodicity and found no difference in the apparent mobility. We also found that the 
apparent mobility in a system with a periodic antidot lattice is proportional to the distance 
d-a  between antidots. Thus, the non-monotonic behaviour of I in a disordered antidot lattice 
has not been explained, and further theoretical analysis of the scattering in this system is 
required. 

Figure 1 shows the magnetoresistance for samples with various degrees of disorder as 
a function of magnetic field. We see for all samples commensurability oscillations when 
the cyclotron diameter R' is comparable to the lattice period. The oscillation amplitude 
decreases with increase of A ,  and the position of last peak shifts to lower magnetic field 
(this shift is more clearly seen in larger-scale figures [SI). The long-range order preservation 
in our sample is responsible for oscillations in the disordered antidot lattice. Figure 1 shows 
that for the periodic lattice, the second peak maximum is higher than the peak maximum 
that lies at lower magnetic field. However, for the array with degree A = 0.1 jm of 
disorder their amplitudes are equal, i.e. the negative magnetoresistance (nm) appears, but 
it is not visible due to oscillation. With increasing degree of disorder nm at low B is 
observed. Figure 2 shows the nMR low-field part for samples with a disordered array of 
antidots. We see that the magnetoresistance is linear for low magnetic field and increases 
with growth of disorder. We did not find this magnetoresistance to be temperature dependent 
at temperahues of 1.7-4.2 K, which proves that this nMR has a classical origin. We should 
note that for weak magnetic field up to 10 mT on nm ( A R I R  N 0.2%) dependence on 
R has been found [7], which can be described by the expression for weak localization 
corrections to the conductivity. Approximation of this magnetoresistance to the higher 
magnetic field B = 0.1 T gives the value A R / R  zz 1% compared to the value of observed 
magnetoresistance. However, it should give rise to nm deviadon from linear B dependence 
and contribute with a T dependent part, which was not found in experiments. We should 
note that electrons in an antidot array move ballistically from one antidot to another and, 
therefore, a low magnetic field (- 0.01 T) influences their motion; in particular, this is 
responsible for the commensurability oscillations [4]. In this case the weak localization 
corrections to the conductivity theory cannot be used because it includes only interference by 
magnetic field diffusive trajectories with unperturbed trajectories. In addition, the monotonic 
increase of linear nm with degree of disorder (figure 2) also gives evidence that this nm 
is not connected with weak localization corrections to the conductivity, because it has a 
non-monotonic behaviour as a function of A ,  in correlation with resistivity [7]. 

For Hall-bridge samples pxr = U ~ ~ / ( U ; ~  f u;J, where prx is the resistivity, and uxx 
and uLxy are the diagonal and Hall parts, respectively, of the conductivity. pxx should be 
a constant in a magnetic field for one group of the charge carriers. Thus, in our case the 



76 G M Gusev et a1 

0 

2 

ap 
\ - 2  

a 
3 

- 
[r 

- 4  - 

9 Figure 2. Magmetoresistance depen- 
dence on 5 for low magnetic field 
2, A = 0.1; 3. A = 0.25; 4, A = 
0.35 pm; 7 = 4.2 K. 

9 

0 0. I 

BOT 

appearance of nm at low magnetic field is a result of a total conductivity increase; however, 
the coexisting Drude contribution decreases the total conductivity: 

uxxr = uo/.o/ll+ (WO*I 

where U, is the cyclotron frequency, T is the elastic scattering time, and uo is the Drude 
conductivity at zero magnetic field. In our case for a weak magnetic field the Drude 
contribution to the conductivity is small, and the observed nMR corresponds to a positive 
magnetoconductance Ausx > 0. although at stronger magnetic field Auxx < 0. The Drude 
conductivity and uxry are exactly compensated, and we observe only nMR. 

In a one-dimensional lateral superlattice with strong modulated potential a positive 
magntoresistance has been observed [9, IO]. This was analysed from the classical standpoint 
and explained by the formation of open electron orbits, which drift in the crossed extemal 
magnetic field and in the periodic superlattice electric field. For the periodic antidot 
lattice, as mentioned above, at low magntic field commensurability oscillations have been 
found. With increase of B ,  when 2Rr < d nm has been observed [3,4]. Increase of 
electrons scattered by antidots and localization around antidots axe responsible for this 
magnetoresistance. In this case the magnetic field is strong, and prx N pry, where pry 
is the Hall resistivity. Thus, because pxx 2 pxy.  a decrease in the resistivity signifies a 
decrease in the conductivity, i.e. localization, in contrast to the weak-magnetic-field case, 
where pxx 2: l/uxz. 

There are two models that explain commensurability oscillations in an antidot lattice. 
The first model considers electron orbits that are not scattered by antidots [4]. A portion fp of 
these orbits oscillates as a function of magnetic field, but the amplitude of these oscillations 
is too small to explain the conductivity oscillations. The second model was suggested by 
Fleischmann et al [ 111. They calculated the contribution of the chaotic trajectories that lie 
in the phase volume near the regular pinned orbits. The resultant conductivity is [I l l  
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where (ui(z)uj(O)) is the velocity correlation function. Fleischmann et ul have found that 
the main contribution to the conductivity is determined by the chaotic orbits, which are 
localized around antidot groups. Baskin et a/ [I21 also considered the electron motion 
in the antidot lattice from the standpoint of the dynamic chaos theory, but in this model 
stable trajectories that roll along the lattice row have been found. These trajectories, in 
contrast to the localized orbits considered in [ll], increase the total conductivity. However, 
the contribution of these trajectories to the conductivity is not sufficient to explain the 
oscillation amplitudes. Therefore nearby chaotic trajectories with the same dynamics should 
be included in the electron diffusion coefficient calculation. The contribution of the runaway 
trajectories to the conductance can be found from the theory for resistance of point contacts 
1121: 

U = (Ze*/h)[kF(d - u)/z](L/d)(2S/zz) 
where S is the fraction of the phase space filled by runaway trajectories, L is the length 
of the sample, or L = 1. and kF is the electron wave vector. The diffusion coefficient of 
the quasi-runaway trajectories was calculated through a numerical simulation. Thus, one 
model analyses an 'island of pinned trajectories' and a nearby sea of chaotic orbits with the 
same dynamics [ I l l ,  and the other an 'island of runaway trajectories' surrounded by the 
sea of electron orbits with anomalous diffusion [ 121. Agreement of theory with experiment 
without adjustable parameters has been obtained in [l I], therefore the contribution of chaotic 
orbits to conductivity is dominant The existence of commensurability oscillations in a 
disordered antidot lattice (figure I),  as indicated above, gives evidence of the stability of 
pinned electron trajectories when the short-range order is violated. The reason can be 
connected to the fact that the chaotic orbits are localized within several superlattice periods. 
In a disordered antidot array a long-range order is preserved, therefore these orbits are 
not destroyed in contrast to the regular trajectories which are determined by short-range 
order. It should be noted that the runaway trajectories considered in model [121 have a 
diffusion coefficient divergency, since the relation ( x ( t ) )  Y t holds for these electrons. 
Similar trajectories with anomalous diffusion have been predicted in a superlattice with a 
weak periodic potential [Z]. These orbits appear in a weak magnetic field. For the antidot 
array the same situation occurs if d / a  >> 1; however at finite magnetic field the portion of 
runaway trajectories should oscillate as a function of B .  For the samples investigated in 
our work, the ratio d/a  = 3.5, and trajectories with anomalous diffusion at low magnetic 
field are not prevented by shadowing antidots in the next rows. The situation is different 
for a disordered antidot lattice. In this case runaway trajectories could appear not only for 
commensurability conditions, as in the periodic system, but at any magnetic field. TWO 
factors are responsible for the existence of anomalous diffusion trajectories: correlation of 
the electron cyclotron radius, and distance between antidots in any magnetic field because 
of disorder and accidental absence of shadowing of these orbits. Thus, the nm observed in 
the disordered antidot lattice could be due to the existence of trajectories with anomalous 
diffusion in the magnetic field. AIso the probability of appearance of these orbits augments 
with increase of disorder, and growth of the magnetoresistance value is expected, as observed 
in experiments (figure 2). The runaway trajectory is an analogy with the edge states in a 
classical strong magnetic field [13]. The conductance of these trajectories can be written in 
the form 

U = e 2 N / h  

where N N i k F R L ,  thus 

IT N E-' 
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however, conductivity decreases with B. Recently the linear magnetoresistance in the 
quantum point contact has been Observed; it was negative due to a difference in the value 
of the edge current inside and Hall current outside the contact [14]. Our situation is similar, 
however the difference between the Hall and the diagonal components of anomalous currents 
is not clear. It should be noted that recently nhm in periodic lattices of antidots and dots has 
been observed [ 151. However, the modulation potential in this superlattice was four times 
less than the Fermi energy, in contrast to our case, when the antidots have a strong repulsive 
potential. For a weak modulation potential, trajectmies that do not contribute to the current 
B = 0 were suggested [ 151. In our case all electrons bounce like balls ballistically through 
the antidot lattice and contribute to the diffusion coefficient. 

In summary, the samples with a disordered antidot lattice, in contrast to the 
periodic array, have revealed linear n m ,  which is temperature independent. Against 
the magnetoresistance background commensurability oscillations due to chaotic orbit 
localization have been found. We believe that the trajectories that roll along rows of the 
lattice and pinned orbits remain stable when the short-range lattice order is violated. The 
small ratio d / a  is responsible for this stability. Further antidot lattice experimental work 
with larger ratio dla  and theoretical analysis of the transition from order to disorder are 
required. 
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